

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

BREED ANCESTRY

Dachshund : 100.0%

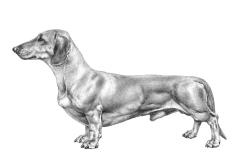
GENETIC STATS

Predicted adult weight: 15 lbs Life stage: Young adult Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-21512580 Swab number: 31220312711605

"SUMMIT"



GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

DACHSHUND

The Dachshund was bred originally in Germany to flush out Badgers and other den animals in the 15th century. The breed, originally known as the Teckel, was refined by German Foresters to have the elongated shape that is advantageous for fitting into tight animal burrows. Dachshunds are often viewed as a symbol for Germany. For example, a Dachshund named Waldi was the first official mascot of the 1972 Summer Olympics held in Munich. Dachshunds are one of the most popular breeds in the United States, ranking 13th in AKC's most popular breeds. The Dachshund's personality is described as energetic, clever, and persistent to the point of stubbornness.

Alternative Names

Dachshund (Miniature), Dachshund (Standard)

Fun Fact

The name Dachshund is derived from "Dachs Krieger" meaning "Badger Warrior", who knew your Dachshund has such a fearsome name!



Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

MATERNAL LINE

Through Summit's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A276

Part of the large A1e haplogroup, this haplotype has been spotted in village dogs in French Polynesia. Among breeds, it occurs in both small (French Bulldog, Miniature Schnauzers, Dachshunds) and large (Great Danes, Bullmastiffs) breeds.

Registration: American Kennel Club

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

PATERNAL LINE

Through Summit's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A2b

A2b appears to have split a few times in succession, which means that some of the Central Asian male ancestors of this lineage went their separate ways before their respective Y chromosomes made their rounds. There is not much diversity in this lineage, meaning that it has only begun to take off recently. Two iconic breeds, the Dachshund and Bloodhound, represent this lineage well. Over half of Rottweilers are A2b, as are the majority of Labrador Retrievers and Cavalier King Charles Spaniels. While A2a is restricted mostly to East Asia, this paternal line is also found among European breeds.

HAPLOTYPE: Hc.9

Part of the A2b haplogroup, this haplotype is found in village dogs spanning South America, Africa, and the South Pacific. Among the breeds we have spotted it in, the most frequent occurrences are in Dachshund, Bloodhound, American Eskimo Dog, and Jack Russell Terrier.

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive e allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the Em allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Puq). Dogs with no copies of Em but one or two copies of the Eg allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^{B} allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

No dark hairs anywhere (ee) RESULT

Not expressed (k^yk^y)

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any pigmented hair likely yellow or tan (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (atat)

Not expressed (Dd)

Registration:

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Likely black colored Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. nose/feet (Bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (II) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced

S Locus (MITF)

by this gene.

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL.

DNA Test Report

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an M*m result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an M*M* result are likely to be phenotypically merle or double merle. Dogs with an mm result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

One merle allele; not expressed in coat (M*m)

RESULT

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one R allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with ee along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, nonuniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an Hh result will be harlequin if they are also M*m or M*M* at the M Locus and are not ee at the E locus. Dogs with a result of hh will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an HH genotype has never been found.

No harlequin alleles (hh)

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

Kembark

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT RESULT Shedding (MC5R) Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSP02 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Likely light shedding (TT)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

RESULT

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Likely normal-length tail (CC)

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely to have hind dew claws (CT)

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

TRAITS: OTHER BODY FEATURES (CONTINUED)

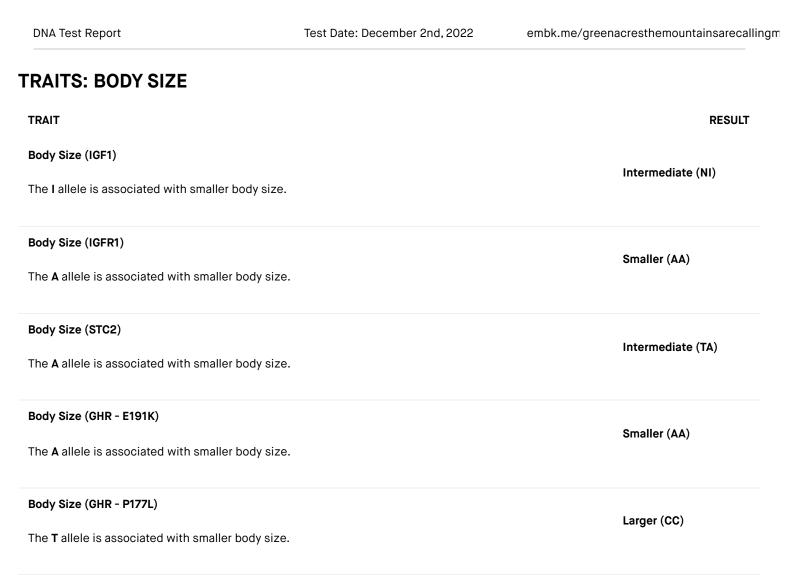
TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.


Likely normal muscling (CC)

Less likely to have blue

eyes (NN)

RESULT

embark

embk.me/greenacresthemountainsarecallingm

DNA Test Report Test Date: December 2nd, 2022

TRAITS: PERFORMANCE

TRAIT	RESULT
Altitude Adaptation (EPAS1)	
This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)	
This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to	

dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

HEALTH REPORT

How to interpret Summit's genetic health results:

If Summit inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Summit for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 255 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

ALT Activity

Clear results

Breed-relevant (8)

Other (246)

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Summit, and may influence his chances of developing certain health conditions.

 Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant) Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant) Narcolepsy (HCRTR2 Exon 1, Dachshund Variant) Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) Osteogenesis Imperfecta (SERPINH1, Dachshund Variant) Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1) Clear 	Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Variant) Variant) Clear Narcolepsy (HCRTR2 Exon 1, Dachshund Variant) Clear Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) Clear Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) Clear Osteogenesis Imperfecta (SERPINH1, Dachshund Variant) Clear	S Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear
 Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) Osteogenesis Imperfecta (SERPINH1, Dachshund Variant) Clear 		Clear
 Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) Osteogenesis Imperfecta (SERPINH1, Dachshund Variant) Clear 	Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
	Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1) Clear	Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
	Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear

Registration: American Kennel Club (AKC) SS00264901 Rembark

DNA Test Report Test Date: December 2nd, 2022 embk.me/greenacresthemountainsarecallingm

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Summit. Review any increased risk or notable results to understand his potential risk and recommendations.

ALT Activity (GPT)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemountainsarecallir
OTHER RESULTS		
O Canine Multiple System Dege	eneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Dege	eneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
O Cardiomyopathy and Juvenile	e Mortality (YARS2)	Clear
Centronuclear Myopathy, CNI	M (PTPLA)	Clear
Cerebellar Hypoplasia (VLDLF	R, Eurasier Variant)	Clear
Chondrodystrophy (ITGA10, N	lorwegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron	n 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (Cl	UBN Exon 8, Beagle Variant)	Clear
Ocobalamin Malabsorption (Cl	UBN Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Ocomplement 3 Deficiency, C3	3 Deficiency (C3)	Clear
Ocongenital Cornification Diso	order (NSDHL, Chihuahua Variant)	Clear
Ocongenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
Ocongenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
Ocongenital Hypothyroidism w	vith Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ocongenital Hypothyroidism w	vith Goiter (SLC5A5, Shih Tzu Variant)	Clear
Ocongenital Macrothrombocyt	topenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
egistration: American Kennel Club (AKC)		

Registration: American Kennel Club (AKC) SS00264901 Rembark

"SUMMIT"

SS00264901

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemountainsarecallin
OTHER RESULTS		
Orgenital Myasthenic Syndrome, CMS ((COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS ((COLQ, Golden Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS ((CHAT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS ((CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (L	RIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (R	RPE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC	37A2)	Clear
Craniomandibular Osteopathy, CMO (SLC	37A2 Intron 16, Basset Hound Variant)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfoundla	and Variant)	Clear
Orstinuria Type II-A (SLC3A1, Australian C	Cattle Dog Variant)	Clear
🚫 Cystinuria Type II-B (SLC7A9, Miniature F	Pinscher Variant)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan	Malamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German Sl	hepherd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Labrador F	Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German S	horthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome of Do	bermans, DVDob, DINGS (MYO7A)	Clear
O Degenerative Myelopathy, DM (SOD1A)		Clear
Omyelinating Polyneuropathy (SBF2/M	TRM13)	Clear
Registration: American Kennel Club (AKC)	Rembark	

embk.me/greenacresthemountainsarecallingm

DNA Test Report

SS00264901

OTHER RESULTS	
O Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear

Test Date: December 2nd, 2022

O Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
O Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
O Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H Exon 5)	Clear
O Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
O Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear
Senamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN)	Clear
Exercise-Induced Collapse, EIC (DNM1)	Clear
Factor VII Deficiency (F7 Exon 5)	Clear
Registration: American Kennel Club (AKC)	

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemountainsa	recalling
OTHER RESULTS			
Sector XI Deficiency (F11 Exon 7, Kerry Blue	Terrier Variant)	Cle	ear
Familial Nephropathy (COL4A4 Exon 3, Coc	sker Spaniel Variant)	Cle	ear
Familial Nephropathy (COL4A4 Exon 30, En	nglish Springer Spaniel Variant)	Cle	ear
Sanconi Syndrome (FAN1, Basenji Variant)		Cle	ear
Fetal-Onset Neonatal Neuroaxonal Dystrop	bhy (MFN2, Giant Schnauzer Variant)	Cle	ear
Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 13, Great Pyrenees Variant)	Cle	ear
Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 12, Otterhound Variant)	Cle	ear
Globoid Cell Leukodystrophy, Krabbe disea	se (GALC Exon 5, Terrier Variant)	Cle	ear
Glycogen Storage Disease Type IA, Von Gie	erke Disease, GSD IA (G6PC, Maltese Varia	nt) Cle	ear
Glycogen Storage Disease Type IIIA, GSD II	IA (AGL, Curly Coated Retriever Variant)	Cle	ear
Glycogen storage disease Type VII, Phosph and English Springer Spaniel Variant)	nofructokinase Deficiency, PFK Deficiency	(PFKM, Whippet Cle	ear
Glycogen storage disease Type VII, Phosph Wachtelhund Variant)	nofructokinase Deficiency, PFK Deficiency	(PFKM, Cle	ear
GM1 Gangliosidosis (GLB1 Exon 2, Portugu	ese Water Dog Variant)	Cle	ear
GM1 Gangliosidosis (GLB1 Exon 15, Shiba I	nu Variant)	Cle	ear
GM1 Gangliosidosis (GLB1 Exon 15, Alaskar	n Husky Variant)	Cle	ear
GM2 Gangliosidosis (HEXA, Japanese Chin	Variant)	Cle	ear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Cle	ear
Golden Retriever Progressive Retinal Atrop	bhy 1, GR-PRA1 (SLC4A3)	Cle	ear

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemountainsarecalling
OTHER RESULTS		
Solden Retriever Progressive Retinal Atro	ophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectinat	te Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Sheph	erd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shephe	rd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
lemophilia B (F9 Exon 7, Rhodesian Ridge	eback Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneratio	on (RAB24, Old English Sheepdog and Gord	don Setter Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Austra	alian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM8	83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1	I, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2	2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SU	IV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (V	/DR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, We	imaraner Variant)	Clear
Itypophosphatasia (ALPL Exon 9, Karelian	Bear Dog Variant)	Clear
Ichthyosis (NIPAL4, American Bulldog Var	iant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS00264901

embk.me/greenacresthemountainsarecallingm

OTHER RESULTS Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant) Clear Ichthyosis (SLC27A4, Great Dane Variant) \oslash Clear Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant) Clear \oslash \bigcirc Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant) Clear Inflammatory Myopathy (SLC25A12) Clear (\checkmark) Inherited Myopathy of Great Danes (BIN1) $\langle \rangle$ Clear Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) Clear (\checkmark) Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie) Clear (\land) Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant) Clear (~) Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant) Clear (\land) Clear Juvenile Epilepsy (LGI2) (>)Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) Clear \oslash Juvenile Myoclonic Epilepsy (DIRAS1) (~) Clear L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) Clear \oslash Lagotto Storage Disease (ATG4D) Clear (∕) \oslash Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant) Clear Late Onset Spinocerebellar Ataxia (CAPN1) Clear Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) Clear \oslash

Test Date: December 2nd, 2022

Registration: American Kennel Club (AKC) SS00264901

DNA Test Report

Rembark

embk.me/greenacresthemountainsarecallingm

	······································		
OTHER RESULTS			
C Leonberger Polyneuropathy 1 (LPN1, AR	HGEF10)		Clear
Leonberger Polyneuropathy 2 (GJA9)			Clear
O Lethal Acrodermatitis, LAD (MKLN1)			Clear
C Leukodystrophy (TSEN54 Exon 5, Stand	ard Schnauzer Variant)		Clear
S Ligneous Membranitis, LM (PLG)			Clear
C Limb Girdle Muscular Dystrophy (SGCD,	Boston Terrier Variant)		Clear
O Long QT Syndrome (KCNQ1)			Clear
Sundehund Syndrome (LEPREL1)			Clear
Macular Corneal Dystrophy, MCD (CHST	6)		Clear
Malignant Hyperthermia (RYR1)			Clear
May-Hegglin Anomaly (MYH9)			Clear
Methemoglobinemia (CYB5R3, Pit Bull 1	Terrier Variant)		Clear
Methemoglobinemia (CYB5R3)			Clear
Microphthalmia (RBP4 Exon 2, Soft Coa	ted Wheaten Terrier Variant)		Clear
Mucopolysaccharidosis IIIB, Sanfilippo	Syndrome Type B, MPS IIIB (NAGLU, Schipp	erke Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfil Huntaway Variant)	lippo Syndrome Type A, MPS IIIA (SGSH Exo	n 6, New Zealand	Clear
Mucopolysaccharidosis Type VI, Marote Variant)	eaux-Lamy Syndrome, MPS VI (ARSB Exon 5	, Miniature Pinscher	Clear
Mucopolysaccharidosis Type VII, Sly Sy	ndrome, MPS VII (GUSB Exon 3, German Sho	epherd Variant)	Clear
Registration: American Kennel Club (AKC)	Combark		

Test Date: December 2nd, 2022

DNA Test Report

DNA Test Report Test Date: December 2nd, 2022 embk.me/greenacresthemountainsarecallingm

OTHER RESULTS

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Registration: American Kennel Club (AKC)	

SS00264901

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemounta	insarecallin
OTHER RESULTS			
Neuronal Ceroid Lipofuscinosis 5, NCL	5 (CLN5 Exon 4 Deletion, Golden Retriever	Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL	6 (CLN6 Exon 7, Australian Shepherd Varia	nt)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7	7 (MFSD8, Chihuahua and Chinese Crested	Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8	8 (CLN8, Australian Shepherd Variant)		Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8	8 (CLN8 Exon 2, English Setter Variant)		Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8	8 (CLN8 Insertion, Saluki Variant)		Clear
 Neuronal Ceroid Lipofuscinosis, Cerebe Variant) 	ellar Ataxia, NCL4A (ARSG Exon 2, Americar	n Staffordshire Terrier	Clear
Oculocutaneous Albinism, OCA (SLC45,	A2 Exon 6, Bullmastiff Variant)		Clear
Oculocutaneous Albinism, OCA (SLC45,	A2, Small Breed Variant)		Clear
Oculoskeletal Dysplasia 2 (COL9A2, Sa	moyed Variant)		Clear
Osteochondrodysplasia (SLC13A1, Pood	dle Variant)		Clear
Osteogenesis Imperfecta (COL1A2, Bea	agle Variant)		Clear
Osteogenesis Imperfecta (COL1A1, Gold	den Retriever Variant)		Clear
P2Y12 Receptor Platelet Disorder (P2Y1	12)		Clear
Pachyonychia Congenita (KRT16, Dogu	e de Bordeaux Variant)		Clear
Paroxysmal Dyskinesia, PxD (PIGN)			Clear
Persistent Mullerian Duct Syndrome, PM	MDS (AMHR2)		Clear
Pituitary Dwarfism (POU1F1 Intron 4, Ka	relian Bear Dog Variant)		Clear

Registration: American Kennel Club (AKC) SS00264901

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022	embk.me/greenacresthemountainsarecallin
OTHER RESULTS		
Platelet Factor X Receptor Deficiency, Sco	ott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Sweet)	lish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Al	askan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39	Exon 3, Old English Sheepdog Variant)	Clear
O Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
O Primary Open Angle Glaucoma (ADAMTS1	7 Exon 11, Basset Fauve de Bretagne Varia	nt) Clear
O Primary Open Angle Glaucoma (ADAMTS1	0 Exon 17, Beagle Variant)	Clear
O Primary Open Angle Glaucoma (ADAMTS1	0 Exon 9, Norwegian Elkhound Variant)	Clear
Primary Open Angle Glaucoma and Primar Variant)	ry Lens Luxation (ADAMTS17 Exon 2, Chine	se Shar-Pei Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon	26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Bied	Syndrome (BBS2 Exon 11, Shetland Sheep	odog Variant) Clear
Progressive Retinal Atrophy, CNGA (CNGA	1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B	, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB	1)	Clear

Rembark

Registration: American Kennel Club (AKC) SS00264901

DNA Test Report Test Date: December 2nd, 2022 embk.me/greenacresthemountainsarecallingm **OTHER RESULTS** Progressive Retinal Atrophy, PRA3 (FAM161A) Clear \oslash Progressive Retinal Atrophy, prcd (PRCD Exon 1) Clear $\langle \rangle$ Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant) \bigcirc Clear \oslash Progressive Retinal Atrophy, rcd3 (PDE6A) Clear Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant) Clear (\checkmark) Protein Losing Nephropathy, PLN (NPHS1) $\langle \rangle$ Clear Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant) Clear (>)Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant) Clear (\checkmark) Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant) Clear (~) Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant) Clear (>)Clear Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant) (~) Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant) Clear \oslash Raine Syndrome (FAM20C) (∕) Clear Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant) Clear \oslash Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7) Clear \oslash Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant) Clear Sensory Neuropathy (FAM134B, Border Collie Variant) Clear Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant) Clear (\checkmark)

Registration: American Kennel Club (AKC) SS00264901 Rembark

"SUMMIT"

SS00264901

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL...

DNA Test Report	Test Date: December 2nd, 2022 embk.r	me/greenacresthemountainsarecallin
OTHER RESULTS		
Severe Combined Immuno	deficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome ((PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory	y Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (Pł	KP1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SC	N8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with	h Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with	n Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with	n Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4	Exon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde De	ehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 I	Exon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 I	Exon 5, Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 I	Exon 8, Landseer Variant)	Clear
Trapped Neutrophil Syndro	ome, TNS (VPS13B)	Clear
O Ullrich-like Congenital Mus	scular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Ullrich-like Congenital Mus	scular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Ve	estibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
egistration: American Kennel Club (AKC) Xembark	

DNA Test Report Test Date: December 2nd, 2022 embk.me/greenacresthemountainsarecallingm **OTHER RESULTS** Urate Kidney & Bladder Stones (SLC2A9) Clear \bigcirc Von Willebrand Disease Type I, Type I vWD (VWF) Clear \oslash Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) Clear Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant) Clear Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant) Clear \bigcirc Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant) \oslash Clear X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2) Clear X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant) Clear \oslash X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR) Clear X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant) Clear X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant) Clear Xanthine Urolithiasis (XDH, Mixed Breed Variant) Clear \bigcirc β-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant) (~) Clear

Registration: American Kennel Club (AKC) SS00264901 Rembark

Test Date: December 2nd, 2022

embk.me/greenacresthemountainsarecallingm

HEALTH REPORT

Notable result

ALT Activity

Green Acres Doxies The Mountains Are Calling ML inherited one copy of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Summit has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Summit has this genotype, as ALT is often used as an indicator of liver health and Summit is likely to have a lower than average resting ALT activity. As such, an increase in Summit's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

Coefficient Of Inbreeding

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

DNA Test Report Test Date: December 2nd, 2022

"SUMMIT"

INBREEDING AND DIVERSITY

CATEGORY

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

GREEN ACRES DOXIES THE MOUNTAINS ARE CAL.

embk.me/greenacresthemountainsarecallingm

10%

RESULT

High Diversity


Your Dog's COI: 10%

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

